Publications

2017

Mutations in the tumor suppressor p53 occur in a majority of human cancers. Some gain-of-function (GOF) p53 mutations endow tumor cells with increased metastatic ability, although our understanding of the underlying mechanism remains incomplete. In this issue of, Pourebrahim and colleagues (pp. 1847-1857) develop a new mouse model of osteosarcoma in which a GOF mutant p53 allele is expressed specifically in osteoblasts, while the tumor microenvironment remains wild type for p53, allowing for the study of cell-autonomous functions. In this model, the role of GOF mutant p53 in promoting lung metastasis is shown to be critically dependent on the transcription factor Ets2 and is accompanied by the elevated expression of a cluster of small nucleolar RNAs (snoRNAs).

Hyperactivation of Wnt/β-catenin signaling is one of the major causes of human colorectal cancer (CRC). A hallmark of Wnt signaling is the nuclear accumulation of β-catenin. Although β-catenin nuclear import and export have been widely investigated, the underlying mechanism of β-catenin's nuclear retention remains largely unknown. Here, we report that Twa1/Gid8 is a key nuclear retention factor for β-catenin during Wnt signaling and colorectal carcinogenesis. In the absence of Wnt, Twa1 exists together with β-catenin in the Axin complex and undergoes ubiquitination and degradation. Upon Wnt signaling, Twa1 translocates into the nucleus, where it binds and retains β-catenin. Depletion of Twa1 attenuates Wnt-stimulated gene expression, dorsal development of zebrafish embryos and xenograft tumor growth of CRC cells. Moreover, nuclear Twa1 is significantly upregulated in human CRC tissues, correlating with the nuclear accumulation of β-catenin and poor prognosis. Thus, our results identify Twa1 as a previously undescribed regulator of the Wnt pathway for promoting colorectal tumorigenesis by facilitating β-catenin nuclear retention.

Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.

It is well established that organs of future metastasis are not passive receivers of circulating tumour cells, but are instead selectively and actively modified by the primary tumour before metastatic spread has even occurred. Sowing the 'seeds' of metastasis requires the action of tumour-secreted factors and tumour-shed extracellular vesicles that enable the 'soil' at distant metastatic sites to encourage the outgrowth of incoming cancer cells. In this Review, we summarize the main processes and new mechanisms involved in the formation of the pre-metastatic niche.

Prostate cancer bone metastases are primarily osteoblastic, but the source of bone-forming cells in these lesions remains poorly defined. In this issue of Developmental Cell, Lin et al. (2017) demonstrate that tumor-associated endothelial cells can give rise to osteoblasts in prostate cancer through endothelial-to-osteoblast (EC-to-OSB) conversion.

MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formedby cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

BACKGROUND & AIMS: Patients chronically infected with the hepatitis B virus (HBV) and receiving long-term treatment with nucleoside or nucleotide analogues are at risk of selecting HBV strains with complex mutational patterns. We herein report two cases of HBV-infected patients with insufficient viral suppression, despite dual antiviral therapy with entecavir (ETV) and tenofovir (TDF). One patient died from aggressive hepatocellular carcinoma (HCC). METHODS: Serum samples from the two patients at different time points were analyzed using ultra-deep pyrosequencing analysis. HBV mutations were identified and transiently transfected into hepatoma cells in vitro using replication-competent HBV vectors, and functionally analyzed. We assessed replication efficacy, resistance to antivirals and potential impact on HBV secretion (viral particles, exosomes). RESULTS: Sequencing analyses revealed the selection of the rtS78T HBV polymerase mutation in both cases that simultaneously creates a premature stop codon at sC69 and thereby deletes almost the entire small HBV surface protein. One of the patients had an additional 261bp deletion in the preS1/S2 region. Functional analyses of the mutations in vitro revealed that the rtS78T/sC69∗ mutation, but not the preS1/S2 deletion, significantly enhanced viral replication and conferred reduced susceptibility to ETV and TDF. The sC69∗ mutation caused truncation of HBs protein, leading to impaired detection by commercial HBsAg assay, without causing intracellular HBsAg retention or affecting HBV secretion. CONCLUSIONS: The rtS78T/sC69∗ HBV mutation, associated with enhanced replication and insufficient response to antiviral treatment, may favor long-term persistence of these isolates. In addition to the increased production of HBV transcripts and the sustained secretion of viral particles in the absence of antigenic domains of S protein, this HBV mutation may predispose patients to carcinogenic effects. LAY SUMMARY: Long-term treatment with antiviral drugs carries the risk of selecting mutations in the hepatitis B virus (HBV). We herein report two cases of patients with insufficient response to dual tenofovir and entecavir therapy. Molecular analyses identified a distinct mutation, rtS78T/sC69∗, that abolishes HBsAg detection, enhances replication, sustains exosome-mediated virion secretion and decreases susceptibility to antivirals, thereby representing a potentially high-risk mutation for HBV-infected individuals.

AIMS: Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are predominant and well-documented types of invasive breast cancer (IBC). We investigated the clinical outcomes of other types of IBC (i.e. uncommon IBC), which collectively account for Σ20% of all IBC cases, as these are largely unknown. METHODS AND RESULTS: We identified all IBC cases diagnosed in 2004-2006 (n = 159 293) and 2010-2011 (n = 118 822) from the Surveillance, Epidemiology and End Results (SEER) database. Uncommon IBCs included mixed IDC and ILC (MDLC), IDC mixed with other types of carcinoma, ILC mixed with other types of carcinoma, and other-type breast cancers (OCs). We estimated overall survival (OS) and cancer-specific survival in multivariate regression models. As compared with IDC, MDLC was associated with an increased OS [adjusted hazard ratio (aHR) = 0.92, P

Bone metastasis is a major health threat to breast cancer patients. Tumor-derived Jagged1 represents a central node in mediating tumor-stromal interactions that promote osteolytic bone metastasis. Here, we report the development of a highly effective fully human monoclonal antibody against Jagged1 (clone 15D11). In addition to its inhibitory effect on bone metastasis of Jagged1-expressing tumor cells, 15D11 dramatically sensitizes bone metastasis to chemotherapy, which induces Jagged1 expression in osteoblasts to provide a survival niche for cancer cells. We further confirm the bone metastasis-promoting function of osteoblast-derived Jagged1 using osteoblast-specific Jagged1 transgenic mouse model. These findings establish 15D11 as a potential therapeutic agent for the prevention or treatment of bone metastasis.

Metastasis and associated complications are the major cause of death for cancer patients. The incidence of bone metastasis is among the highest in cancers arising from breast, prostate, and lung. Common skeletal-related events caused by bone metastasis include aberrant bone remodeling (osteolytic, osteoblastic, and mixed), bone pain, fracture, spinal cord compression, and life-threatening hypercalcemia. It is now known that interactions between tumor cells and bone stroma lie at the core of major steps of bone-metastasis progression. Approved pharmaceutical drugs for the treatment of bone metastasis, including bisphosphonate and denosumab, were designed to target bone stromal cell components. In recent years, research in our laboratory and others has revealed intricate tumor-stroma interactions as the driving force behind osteolytic bone-metastasis development, providing a set of new candidates for future drug development. Moreover, recent studies also indicate existence of distinct bone niches in supporting hematopoietic stem cell renewal and differentiation. These niche components are likely utilized by metastatic cancer cells for seeding, progression, and therapy resistance of bone metastasis. Future studies in this direction may discover additional therapeutic targets for bone-metastasis treatment.

Long noncoding RNAs (lncRNAs) are increasingly recognized for their role in cancer progression. The previously uncharacterized lncRNA MAYA is now shown to promote bone metastasis by bridging ROR1-HER3 and Hippo-YAP pathways. Neuregulin-induced HER3 phosphorylation by ROR1 recruits a MAYA-containing protein complex to methylate Hippo/MST1 and activate YAP target genes that are essential for bone metastasis.

2016

BACKGROUND: Jagged1, the ligand of Notch, has been shown to be involved in formation of bone metastases in an experimental study. Here, clinical relevance of Jagged1 expression in tumor progression was assessed in human breast carcinomas. METHODS: Jagged1 expression was evaluated by immunohistochemistry in 228 tumor tissue samples and compared to clinicopathologic parameters and patients' outcomes. Furthermore, circulating tumor cells (CTCs) from peripheral blood of 100 unmatched metastatic cancer patients with progressive disease were enriched using Ficoll density gradient centrifugation and detected by pan-keratin/Jagged1/CD45 immunofluorescent staining. RESULTS: Jagged1 expression was detected in 50% of 228 tumors. Jagged1 expression was correlated with higher tumor grade (P = 0.047), vascular invasion (P = 0.026), luminal B subtype (P = 0.016), overexpression of Her-2 (P = 0.001), high Ki-67 expression (P = 0.035), and aldehyde dehydrogenase 1 (ALDH1) positivity (P = 0.013). Jagged 1 expression indicated shorter disease-free survival (DFS) (P = 0.040) and metastasis-free survival (P = 0.048) in lymph node-negative breast cancer for which it was the only independent predictor of DFS (multivariate analysis, P = 0.046). Tumors characterized by the strongest Jagged1 staining intensity (7.5% of cases) correlated with lymph node positivity (P = 0.037), metastatic relapse (P = 0.049), and higher number of disseminated tumor cells in bone marrow aspirates (P = 0.041). Twenty-one unmatched metastatic breast cancer patients with progressive disease were positive for CTCs, and 85.7% of the CTCs also expressed Jagged1. The presence of Jagged1(+) CTCs was significantly associated with shorter progression-free survival in patients treated with bisphosphonates (P = 0.013). CONCLUSIONS: Jagged1 expression characterizes more aggressive breast carcinoma and might be involved in tumor cell dissemination, metastatic progression, and resistance to bone-targeting therapy in breast cancer patients.

Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies.

One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions.

MicroRNAs are important in cancer development and progression. In the present study, the clinical significance and function of microRNA-711 (miR-711) expression in breast cancer were investigated. The expression level of miR-711 was analyzed in breast cancer tissue samples using reverse transcription-quantitative polymerase chain reaction. Cell proliferation, colony formation, apoptosis and Transwell assays were performed in breast cancer cell lines transfected with miR-711 mimics or inhibitors, or control sequence. miR-711 was found to be upregulated in 30 formalin-fixed paraffin-embedded breast cancer tissue samples compared with paired non-cancerous breast tissues (P

In this paper, we investigate the five-species Jungle game in the framework of evolutionary game theory. We address the coexistence and biodiversity of the system using mean-field theory and Monte Carlo simulations. Then, we find that the inhibition from the bottom-level species to the top-level species can be critical factors that affect biodiversity, no matter how it is distributed, whether homogeneously well mixed or structured. We also find that predators' different preferences for food affect species' coexistence.

Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs) and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1) in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β) is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis.

Metastatic spread of cancer cells from the primary tumors to distant vital organs, such as lung, liver, brain, and bone, is responsible for the majority of cancer-related deaths. Development of metastatic lesions is critically dependent on the interaction of tumor cells with the stromal microenvironment. As a multifunctional paracrine signaling factor that is abundantly produced by both tumor and stromal cells, TGFβ has been well established as an important mediator of tumor-stromal interaction during cancer metastasis. Imaging the in vivo dynamic of TGFβ signaling activity during cancer metastasis is critical for understanding the pathogenesis of the disease, and for the development of effective anti-metastasis treatments. In this chapter, I describe several xenograft methods to introduce human breast cancer cells into nude mice in order to generate spontaneous and experimental metastases, as well as the luciferase-based bioluminescence imaging method for quantitative imaging analysis of TGFβ signaling in tumor cells during metastasis.

The involvement of epithelial-to-mesenchymal transition (EMT) in metastasis has long been under debate. Recent efforts to probe the occurrence and functional significance of EMT in clinical samples and animal models have produced exciting but sometimes conflicting findings. The diversity of EMT underlies the challenge in studying its role in metastasis.

Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system.

A model of stochastic evolutionary game dynamics with finite population of size N+M was built. Among these individuals, N individuals update strategies with aspiration updating, while the other M individuals update strategies with imitation updating. In the proposed model, we obtain the expression of the mean fraction of cooperators and analyze some concrete cases. Compared with the standard imitation dynamics, there is always a positive probability to support the formation of cooperation in the system with the aspiration and imitation rules. Moreover, the numerical results indicate that more aspiration-driven individuals lead to a higher mean fraction of imitation-driven cooperators, which means the invasion of the aspiration-driven individuals is conducive to promoting the cooperation of the imitation-driven individuals.

The mammary epithelium is organized in a hierarchy of mammary stem cells (MaSCs), progenitors, and differentiated cells. The development and homeostasis of mammary gland are tightly controlled by a complex network of cell lineage regulators. These determinants of cellular hierarchy are frequently deregulated in breast tumor cells and closely associated with cancer progression and metastasis. They also contribute to the diversity of breast cancer subtypes and their distinct metastatic patterns. Cell fate regulators that normally promote stem/progenitor activities can serve as drivers for epithelial-mesenchymal transition and metastasis whereas regulators that promote terminal differentiation generally suppress metastasis. In this review, we discuss how some of the key factors function in normal mammary lineage determination and how these processes are hijacked by tumor cells to enhance metastasis. Understanding the molecular connections between normal development and cancer metastasis will enable the development of more specific and effective therapeutic approaches targeting metastatic tumor cells.

The ability for tumor cells to spread and metastasize to distant organs requires proteolytic degradation of extracellular matrix (ECM). This activity is mediated by invadopodia, actin-rich membrane protrusions that are enriched for proteases. However, the mechanisms underlying invadopodia activity are not fully understood. Here, we report that a specific CD44 splice isoform, CD44s, is an integral component in invadopodia. We show that CD44s, but not another splice isoform CD44v, is localized in invadopodia. Small hairpin (sh)RNA-mediated depletion of CD44s abolishes invadopodia activity, prevents matrix degradation and decreases tumor cell invasiveness. Our results suggest that CD44s promotes cortactin phosphorylation and recruits MT1-MMP (also known as MMP14) to sites of matrix degradation, which are important activities for invadopodia function. Importantly, we show that depletion of CD44s inhibits breast cancer cell metastasis to the lung in animals. These findings suggest a crucial mechanism underlying the role of the CD44s splice isoform in breast cancer metastasis.

2015

Metastasis to distant organs depends on pathological crosstalk between tumor cells and various tissue-specific stromal components. Zhang and colleagues recently demonstrated that astrocyte-derived exosomal miR-19a reversibly downregulated PTEN expression in cancer cells, thereby increasing their CCL2 secretion and recruitment of myeloid cell to promote brain metastasis.

MicroRNAs (miRNAs) are short, endogenous RNA molecules that have essential roles in regulating gene expression. They control numerous physiological and cellular processes, including normal bone organogenesis and homeostasis, by enhancing or inhibiting bone marrow cell growth, differentiation, functional activity and crosstalk of the multiple cell types within the bone. Hence, elucidating miRNA targets in bone marrow stromal cells has revealed novel regulations during bone development and maintenance. Moreover, recent studies have detailed the capacity for bone stromal miRNAs to influence bone metastasis from a number of primary carcinomas by interfering with bone homeostasis or by directly influencing metastatic tumor cells. Owing to the current lack of good diagnostic biomarkers of bone metastases, such changes in bone stromal miRNA expression in the presence of metastatic lesions may become useful biomarkers, and may even serve as therapeutic targets. In particular, cell-free and exosomal miRNAs shed from bone stromal cells into circulation may be developed into novel biomarkers that can be routinely measured in easily accessible samples. Taken together, these findings reveal the significant role of bone marrow stroma-derived miRNAs in the regulation of bone homeostasis and bone metastasis.

MicroRNAs (miRNAs) are integral molecules in the regulation of numerous physiological cellular processes that have emerged as critical players in cancer initiation and metastatic progression, both by promoting and suppressing metastasis. Recently, cell-free miRNAs shed from cancer cells into circulation have been reported in cancer patients, raising hope for development of novel biomarkers that can be routinely measured in easily accessible samples. In fact, establishing miRNA expression in the circulation likely has advantages over determination in primary tumor tissue, further augmenting the potential applications of miRNA detection in oncological practice. In addition, secretion of miRNAs impacting distant cell signaling or promoting the formation of a niche that sustains a distant tumor microenvironment allows for new treatment approaches to thwart cancer progression.

Metastatic spread of cancer cells is the main cause of death of breast cancer patients. A better understanding of the molecular mechanism of cancer metastasis is essential for the development of novel and effective therapies. The biological complexity of the metastasis process requires the combination of multiple experimental systems to model distinct steps of cancer metastasis. Several animal models have been generated to mimic the process of breast cancer metastasis, with unique advantages and drawbacks of each model. In this chapter, we describe transplantable xenograft and allograft methods to introduce human or mouse breast tumor cells into mice in order to generate spontaneous and experimental metastasis.

Considerable evidence points to the importance of disseminated tumor cells, which are commonly detected in the bone marrow and display features of cellular plasticity, in predicting the clinical outcome of breast cancer. In this issue of Cancer Discovery, Werner and colleagues report on the discovery of retinoic acid-induced 2 (RAI2) as a differentiation factor that suppresses early metastatic spread of estrogen receptor-positive breast cancer.

Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

We combined the standard Moran and Fermi process into a mixed process with two strategies C (co-operation) and D (defection). In a well-mixed population of size N+M, N individuals have the same update mechanism as that of Moran process, while the other M individuals have the same update mechanism as that of Fermi process. We obtain the balance equations of the conditional fixation time and unconditional fixation time. What these equations are doing is to make numerical sense for all the figures. We find that the expectation values of conditional fixation times of a single co-operator are smaller than the average values of the standard Moran and Fermi process. In addition, the conditional fixation time of a single co-operator with update rule of Moran is larger than that of Fermi when the intensity of selection is sufficiently small. The simulation results show that the unconditional fixation time of a co-operator who obtains more information is smaller. In addition, the larger the difference of individuals׳ payoff, the smaller the unconditional fixation time.

An evolutionary dynamic model of 2×2 games with finite population of size N+M was built. Among these individuals, N individuals have the same update mechanism as that of the Moran process, while the other M individuals have the same update mechanism as that of the Fermi process. We obtain the balance equations of the fixation probability and analyze some concrete cases. In contrast with the results of neutral evolution, the fixation probability of a single co-operator with the same update mechanism as that of the Fermi process is higher. Besides, more co-operators with the update mechanism of the Fermi process lead to higher fixation probabilities when co-operators׳ quantity is the same.

The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions within this specialized microenvironment which give rise to the high incidence of bone metastasis in breast and prostate cancer patients have long remained uncharacterized. With the recent description of the bone metastatic "niche," considerable focus has been placed on understanding how the bone stroma contributes to each step of metastasis. Discoveries within this field have demonstrated that when cancer cells home to the niche in which hematopoietic and mesenchymal stem/progenitor cells normally reside, a bidirectional crosstalk emerges between the tumor cells and the bone metastatic stroma. This communication modulates every step of cancer cell metastasis to the bone, including the initial homing and seeding, formation of micrometastases, outgrowth of macrometastases, and the maintenance of long-term dormancy of disseminated tumor cells in the bone. In clinical practice, targeting the bone metastatic niche is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance, and other aspects of cancer progression. Here, we review the current knowledge concerning the role of the bone metastatic niche in bone metastasis.

Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

Bone metastasis often emerges long after the initial dissemination of cancer cells. In this issue of Cancer Cell, Wang and colleagues demonstrate that disseminated breast cancer cells engage osteogenic niches in the bone through heterotypic adherins junctions. This interaction activates mTOR signaling in cancer cells and supports their expansion to micrometastases.

2014

Emerging evidence suggests that cancer is populated and maintained by tumour-initiating cells (TICs) with stem-like properties similar to those of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signalling. Importantly, Fzd7-dependent enhancement of Wnt signalling by ΔNp63 also governs tumour-initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms.

Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).

Growing evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. Here, we report that miR-215 is significantly up-regulated in gastric cancer tissues from either gastrectomy or gastroscopy. Receiver Operator Characteristic (ROC) curve analysis indicated that miR-215 may be a candidate biomarker for gastric cancer diagnosis. Inhibition of miR-215 significantly suppressed gastric cancer cell proliferation possibly via G1 arrest. Further analyses indicated that miR-215 was able to target retinoblastoma tumor-suppressor gene 1 (RB1) through its 3'-UTR in gastric cancer cells. These data suggest that frequently up-regulated miR-215 in gastric cancer may influence cell proliferation by targeting RB1.

MicroRNAs (miRNAs) are short, endogenous RNAs that have essential roles in regulating gene expression through the disruption of target genes. The miRNA-induced suppression can occur through Argonaute-mediated cleavage of target mRNAs or by translational inhibition. System-wide studies have underscored the integral role that miRNAs play in regulating the expression of essential genes within bone marrow stromal cells. The miRNA expression has been shown to enhance or inhibit cell differentiation and activity, and elucidating miRNA targets within bone marrow cells has revealed novel regulations during normal bone development. Importantly, multiple studies have shown that miRNA misexpression mediates the progression of bone-related pathologies, including osteopetrosis and osteoporosis, as well as the development and progression of osteosarcoma. Furthermore, recent studies have detailed the capacity for miRNAs to influence bone metastasis from a number of primary carcinomas. Taken together, these findings reveal the significant clinical potential for miRNAs to regulate bone homeostasis, as well as to mediate bone-related pathologies.

MicroRNAs (miRNAs) have been shown to function as key regulators of tumor progression and metastasis. Recent studies have indicated that the miRNAs comprising the miR-23b/27b/24 cluster might influence tumor metastasis, although the precise nature of this regulation remains unclear. Here, expression of the miR-23b/27b/24 cluster is found to correlate with metastatic potential in mouse and human breast cancer cell lines and is elevated in metastatic lung lesions in human breast cancer patients. Ectopic expression of the miRNAs in the weakly metastatic mouse 4TO7 mammary tumor cell line had no effect on proliferation or morphology of tumor cells in vitro but was found to increase lung metastasis in a mouse model of breast cancer metastasis. Furthermore, gene expression profiling analysis of miRNA overexpressing 4TO7 cells revealed the direct targeting of prosaposin (PSAP), which encodes a secreted protein found to be inversely correlated with metastatic progression in human breast cancer patients. Importantly, ectopic expression of PSAP was able to suppress the metastatic phenotype in highly metastatic 4T1 and MDA-MB-231 SCP28 cells, as well as in cells ectopically expressing miR-23b/27b/24. These findings support a metastasis-promoting function of the miR-23b/27b/24 cluster of miRNAs, which functions in part through the direct inhibition of PSAP.

Bone metastasis is a frequent occurrence in late stage solid tumors, including breast cancers, prostate or lung. However, the causes for this proclivity have only recently been elucidated. Significant progress has been made in the past decade toward understanding the molecular underpinnings of bone metastasis, and much of this research reveals a crucial role of the host stroma in each step of the metastatic cascade. Tumor-stromal interactions are crucial in engineering a pre-metastatic niche, accommodating metastatic seeding, and establishing the vicious cycle of bone metastasis. Current treatments in bone metastasis focus on latter steps of the metastatic cascade, with most treatments targeting the process of bone remodeling; however, emerging research identifies many other candidates as promising targets. Host stromal cells including platelets and endothelial cells are important in the early steps of metastatic homing, attachment and extravasation while a variety of immune cells, parenchymal cells and mesenchymal cells of the bone marrow are important in the establishment of overt, immune-suppressed metastatic lesions. Many participants during these steps have been identified and functionally validated. Significant contributors include integrins, (αvβ3, α2β1, α4β1), TGFβ family members, bone resident proteins (BSP, OPG, SPARC, OPN), RANKL, and PTHrP. In this review, we will discuss the contribution of host stromal cells to pre-metastatic niche conditioning, seeding, dormancy, bone-remodeling, immune regulation, and chemotherapeutic shielding in bone metastasis. Research exploring these interactions between bone metastases and stromal cells has yielded many therapeutic targets, and we will discuss both the current and future therapeutic avenues in treating bone metastasis.

Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.

Metadherin (MTDH) and Staphylococcal nuclease domain containing 1 (SND1) are overexpressed and interact in diverse cancer types. The structural mechanism of their interaction remains unclear. Here, we determined the high-resolution crystal structure of MTDH-SND1 complex, which reveals an 11-residue MTDH peptide motif occupying an extended protein groove between two SN domains (SN1/2), with two MTDH tryptophan residues nestled into two well-defined pockets in SND1. At the opposite side of the MTDH-SND1 binding interface, SND1 possesses long protruding arms and deep surface valleys that are prone to binding with other partners. Despite the simple binding mode, interactions at both tryptophan-binding pockets are important for MTDH and SND1's roles in breast cancer and for SND1 stability under stress. Our study reveals a unique mode of interaction with SN domains that dictates cancer-promoting activity and provides a structural basis for mechanistic understanding of MTDH-SND1-mediated signaling and for exploring therapeutic targeting of this complex.

TGF-β signaling promotes metastasis by controlling the expression of downstream target genes. In this issue of Cancer Cell, Yuan and colleagues discover a novel TGF-β-induced lncRNA, lncRNA-ATB, which stimulates EMT through sequestering miR-200s and facilitates colonization by stabilizing IL-11 mRNA, thus promoting both early and late steps of cancer metastasis.

Sirtuins (SIRTs) are critical enzymes that govern genome regulation, metabolism, and aging. Despite conserved deacetylase domains, mitochondrial SIRT4 and SIRT5 have little to no deacetylase activity, and a robust catalytic activity for SIRT4 has been elusive. Here, we establish SIRT4 as a cellular lipoamidase that regulates the pyruvate dehydrogenase complex (PDH). Importantly, SIRT4 catalytic efficiency for lipoyl- and biotinyl-lysine modifications is superior to its deacetylation activity. PDH, which converts pyruvate to acetyl-CoA, has been known to be primarily regulated by phosphorylation of its E1 component. We determine that SIRT4 enzymatically hydrolyzes the lipoamide cofactors from the E2 component dihydrolipoyllysine acetyltransferase (DLAT), diminishing PDH activity. We demonstrate SIRT4-mediated regulation of DLAT lipoyl levels and PDH activity in cells and in vivo, in mouse liver. Furthermore, metabolic flux switching via glutamine stimulation induces SIRT4 lipoamidase activity to inhibit PDH, highlighting SIRT4 as a guardian of cellular metabolism.

Metadherin (MTDH) overexpression in diverse cancer types has been linked to poor clinical outcomes, but definitive genetic proof of its contributions to cancer remains incomplete. In particular, the degree to which MTDH may contribute to malignant progression in vivo is lacking. Here, we report that MTDH is amplified frequently in human prostate cancers where its expression levels are tightly correlated with prostate cancer progression and poor disease-free survival. Furthermore, we show that genetic ablation of MTDH in the transgenic adenomcarcinoma of mouse prostate (TRAMP) transgenic mouse model of prostate cancer blocks malignant progression without causing defects in the normal development of the prostate. Germline deletion of Mtdh in TRAMP mice prolonged tumor latency, reduced tumor burden, arrested progression of prostate cancer at well-differentiated stages, and inhibited systemic metastasis to distant organs, thereby decreasing cancer-related mortality ∼10-fold. Consistent with these findings, direct silencing of Mtdh in prostate cancer cells decreased proliferation in vitro and tumor growth in vivo, supporting an epithelial cell-intrinsic role of MTDH in prostate cancer. Together, our findings establish a pivotal role for MTDH in prostate cancer progression and metastasis and define MTDH as a therapeutic target in this setting. Cancer Res; 74(18); 5336-47. ©2014 AACR.

The Metadherin gene (MTDH) is prevalently amplified in breast cancer and associated with poor prognosis; however, its functional contribution to tumorigenesis is poorly understood. Using mouse models representing different subtypes of breast cancer, we demonstrated that MTDH plays a critical role in mammary tumorigenesis by regulating oncogene-induced expansion and activities of tumor-initiating cells (TICs), whereas it is largely dispensable for normal development. Mechanistically, MTDH supports the survival of mammary epithelial cells under oncogenic/stress conditions by interacting with and stabilizing Staphylococcal nuclease domain-containing 1 (SND1). Silencing MTDH or SND1 individually or disrupting their interaction compromises tumorigenenic potential of TICs in vivo. This functional significance of MTDH-SND1 interaction is further supported by clinical analysis of human breast cancer samples.

Bone metastasis is a frequent complication of breast cancer that is often accelerated by TGF-β signaling; however, little is known about how the TGF-β pathway is regulated during bone metastasis. Here we report that deleted in liver cancer 1 (DLC1) is an important regulator of TGF-β responses and osteolytic metastasis of breast cancer cells. In murine models, breast cancer cells lacking DLC1 expression exhibited enhanced capabilities of bone metastasis. Knockdown of DLC1 in cancer cells promoted bone metastasis, leading to manifested osteolysis and accelerated death in mice, while DLC1 overexpression suppressed bone metastasis. Activation of Rho-ROCK signaling in the absence of DLC1 mediated SMAD3 linker region phosphorylation and TGF-β-induced expression of parathyroid hormone-like hormone (PTHLH), leading to osteoclast maturation for osteolytic colonization. Furthermore, pharmacological inhibition of Rho-ROCK effectively reduced PTHLH production and breast cancer bone metastasis in vitro and in vivo. Evaluation of clinical breast tumor samples revealed that reduced DLC1 expression was linked to elevated PTHLH expression and organ-specific metastasis to bone. Overall, our findings define a stroma-dependent paradigm of Rho signaling in cancer and implicate Rho-TGF-β crosstalk in osteolytic bone metastasis.